Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Genes (Basel) ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540377

RESUMEN

The citrus whitefly, Dialeurodes citri, is a destructive pest that infests citrus plants. It is a major vector in transmitting plant viruses such as citrus yellow vein clearing virus (CYVCV), which has caused severe economic losses worldwide, and therefore efficient control of this pest is economically important. However, the scope of genetic studies primarily focused on D. citri is restricted, something that has potentially limited further study of efficient control options. To explore the functionalities of D. citri target genes, screening for specific reference genes using RT-qPCR under different experimental conditions is essential for the furtherance of biological studies concerning D. citri. The eight candidate reference genes were evaluated by dedicated algorithms (geNorm, Normfinder, BestKeeper and ΔCt method) under five specific experimental conditions (developmental stage, sex, tissue, population and temperature). In addition, the RefFinder software, a comprehensive evaluation platform integrating all of the above algorithms, ranked the expression stability of eight candidate reference genes. The results showed that the best reference genes under different experimental settings were V-ATP-A and RPS18 at different developmental stages; α-tubulin, 18S and V-ATP-A in both sexes; EF1A and α-tubulin in different tissues; Actin and Argk under different populations; and RPS18 and RPL13 in different temperatures. The validation of selected reference genes was further identified using heat shock protein (Hsp) 70 as a reporter gene. Our study, for the first time, provides a detailed compilation of internal reference genes for D. citri that are suitable for RT-qPCR analysis, which is robust groundwork for comprehensive investigation of the functional target genes of D. citri.


Asunto(s)
Hemípteros , Femenino , Animales , Masculino , Hemípteros/genética , Tubulina (Proteína)/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Expresión Génica , Adenosina Trifosfato
2.
Bull Entomol Res ; : 1-20, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444234

RESUMEN

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...